专利号:2019101359461
本发明公开了一种轻量级的缺失时空数据的重构方法,整体步骤为:1、时空数据表示;把静态参考的点状数据和网状数据抽象为统一的时空状态矩阵来表示;2、时间维度插值;引入平均相关系数来自动选取时间窗口以提高SES算法建模时间依赖性的能力;3、空间维度插值;分别采用基于高斯函数的恒等距离和相关性距离为每个空间邻居赋予权重来提高IDW算法建模空间依赖性的能力;4、时空整合;引入极限学习机作为神经网络模型的学习算法,整合时空维度的估计结果得到缺失数据最终的预测值。本发明通过集成多个改进的轻量级模型,使得重构算法在保证计算效率的前提下,进一步提高海量缺失时空数据的重构精度。